Name:	Date:	Period:
NOTES		

Geology Chapter 2.1 and 2.2: Fossils and Earth's History

·	
How do we	Scientists study rocks, <u>fossils</u> , & other natural evidence for clues about what Earth's <u>history</u>
know Earth's	<u>Fossil</u> : traces or remains of living things from <u>long ago</u>
History?	 Dinosaur <u>bones</u>, footprints
	 Give information about the organism (often extinct, but not always!)
	Allows us to have some idea about what they looked like and how they behaved
	 Exist in many different forms:
	<u>shells</u> , bones, <u>teeth</u>
	 Impressions or other evidence of an organism <u>preserved</u> in rock
	 Actual <u>organism</u> (or part of one) can be preserved
What are	Original remains: fossils of organism's <u>actual</u> bodies/body parts (<u>RARE</u> !!!); also called <u>preserved</u>
original	fossils
remains?	 Found in <u>airtight</u>/small places that prevent <u>decay</u>
	Ice: one of the best preservers—frozen mammoth body found in Siberia with
	bone, <u>muscle</u> , skin, and <u>hair</u> still in place
	Amber: tree sap/resin, a sticky substance that flows in trees like syrup and
	protects the tree by trapping insects.
	<u>skull</u> . Easeile are direct evidence of forms of life (like dinesaure)
	 Fossils are direct <u>evidence</u> of forms of life (like <u>dinosaurs</u>)
How are fossils	• In rocks \rightarrow <u>conditions</u> must be "just right"—must be preserved before it <u>decays</u>
formed?	 Body parts are replaced by <u>minerals</u> (turned to <u>stone</u>) Most experience dia and decomposes without leaving feecile
	 Most organisms die and <u>decompose</u> without leaving <u>fossils</u> Hard parts (shalls, hange, tasth) decompose slowly, man likely to become fossile
	 <u>Hard</u> parts (shells, bones, teeth) decompose <u>slowly</u>→more likely to become <u>fossils</u>
	Form in <u>sedimentary</u> rock
	 Organism is <u>buried</u> in sediment; sediment becomes <u>rock</u>
	Heat/pressure in igneous and metamorphic rock can <u>destroy</u> fossils
	 Not all fossils are <u>original</u> remains but are impressions/<u>traces</u>, made of <u>rock</u>
What are the 4	Different environmental <u>conditions</u> form different fossils
types of fossils?	Molds & Casts
	• <u>Mold</u> : forms when sediments <u>bury</u> an organism and the sediments change into <u>rock</u> ; the
	organism <u>decays</u> leaving a <u>hole</u> in the rock in the <u>shape</u> of the organism.
	<u>Cast</u> : forms when a <u>mold</u> is filled with sand or <u>mud</u> that hardens into the <u>shape</u> of the
	organism.
	Petrified fossil: forms when <u>minerals</u> soak into the buried remains, changing them into <u>rock</u> . Ex:
	petrified <u>wood</u> : stone fossil of a tree
	<u>Carbon</u> film: forms when organisms (or parts) are pressed between layers of soft <u>mud</u> or clay that
	hardens, squeezing almost all the decaying organism away leaving the <u>carbon</u> imprint in the rock.
	Shows details of soft parts rarely seen in other types of fossils.
	<u>Trace</u> fossils: evidence of organism's presence— <u>Footprints</u> , trails, animal <u>holes</u>
Stop and Think:	1. What kind of information could you get from a fossil?
	2. You went exploring and found several fossils. For each one, tell which type of fossil they are.
	a. A piece of stone that looks like tree bark.
	i. A rock with lines in it that look like the marks from a shell.
	ii. The image of a moth on a rock. It even shows the wings!
	a. A 3-toed foot print in rock.
	b. Why do we not have fossils of all animals that lived in Earth's
	past?
	c. Why are most fossils hard parts of organisms?
How can we see	Fossil record: <u>Millions</u> of fossils have been collected and observed. Certain fossilized organisms
changes in life	could only live in specific environments or under particular climate conditions. Extinction of life
and the	forms as well as how and when <u>new</u> life-forms appeared is part of the fossil <u>record</u> .
environment?	Tree <u>rings</u>
	 See overall <u>weather</u> patterns in an area: rings vary in <u>size</u> depending on how much the
	tree <u>grows</u> that year— <u>dry y</u> ears= <u>thin</u> rings, good rainfall/weather= <u>thick</u> ring
	Ice cores

	 Greenland & Antarctica—<u>ice</u>/snow has built up into <u>thick</u> layers called <u>glaciers</u> (can be 	
	 taller than skyscrapers) Ice core: cylindrical sample that shows <u>layers</u> of snow/ice that have built up for <u>thousands</u> of years 	
	of years — Analyze <u>air</u> trapped in the ice to learn how the atmosphere has <u>changed</u> —can indicate <u>temperature</u> , volcanic activity, etc.	
Stop and Think:	 You are a paleontologist studying Earth's past. Explain how you would figure out the following information. a. How fast a T-rex ran. b. How much oxygen was in the atmosphere 2 billion years ago. 	
	 c. What the temperature was like 250 million years ago	
What does sedimentary rock tell us about Earth's past?	 <u>Sedimentary</u> rock show relative age. <u>Relative</u> age: the age of an event or object in <u>relation</u> to <u>other</u> events or objects. In past—fossils, <u>rocks</u>, etc. were used to reconstruct the Earth's past (no <u>technology</u>) Sedimentary rock forms in <u>layers</u> <u>oldest</u> layer = <u>bottom</u> (think about it—if it formed first, it will be on bottom) <u>youngest</u> layer = <u>top</u> This is called the <u>Law</u> of Superposition: each rock layer is <u>younger</u> than the one <u>below</u> it. 	
Stop and Think:	 Called <u>relative</u> age because we don't know <u>exactly</u> when each layer formed 1. In the diagram to the right, write which layer is the oldest and which is the youngest. a. Oldest:	
How can rock layers be disturbed?	 The movement of <u>tectonic</u> plates: A whole set of <u>layers</u> can get turned on its <u>side</u>—can be bent and <u>folded</u> to where the oldest layer is no longer on the <u>bottom</u> (called <u>unconformity</u>) One way we determine the <u>original</u> order is by looking at <u>similar</u> stacks of undisturbed rocks. <u>Igneous</u> rock: molten rock (<u>magma</u>) forces its way through the <u>layers</u> magma cools and forms <u>igneous</u> rock. 	
	 The igneous rock =<u>YOUNGER</u> than layers it cuts through (think about it: rock layers have to be present <u>before</u> the magma can cut through them!) 	
Stop and Think:	 In the diagram to the right, write which layer is the oldest, which is the youngest, and which is the igneous rock. Oldest:	
What are index fossils?	 Fossils in sedimentary rock can offer <u>clues</u> to Earth's past. Fossils can tell the <u>age</u> of the rock: organism lived when the rock layer <u>formed</u> <u>index</u> fossils: fossils of <u>common</u> organisms that lived in <u>many</u> areas during a specific span of <u>time</u>—used to determine <u>age</u> of rock layers Ex: a type of shellfish (<i>I. labiatus</i>) lived from <u>144</u> million to <u>65</u> million years ago, so if you find it's fossil, you know that rock layer is between <u>144</u> and <u>65</u> million years ago. 	
How do we know absolute age?	 <u>Absolute</u> age: the <u>actual</u> age of an event or object; determined through radioactive <u>dating</u>. <u>Half-life</u>: time it takes for <u>half</u> of the atoms in a radioactive sample to "<u>break down</u>" Different <u>elements</u> = different half-lives. Uranium and <u>C-14</u> are 2 of the most commonly used to <u>date</u> rocks because they have <u>long</u> half-lives (C-14's half-life is <u>5730</u> years, uranium is 704 <u>million</u> years) Radioactive dating works best with <u>igneous</u> rocks 	