\qquad Pd: \qquad NOTES

Chemistry Notes: Compounds and Mixtures

What is a Pure Substance?	- A pure substance is a type of \qquad that includes both \qquad and \qquad - Pure substances cannot be separated by \qquad means such as - Distillation: \qquad a liquid until it evaporates (changes to a \qquad), then condensing it back to a \qquad -different substances boil at different \qquad , so we can separate different substances this way. - Filtration: the process of removing \qquad from liquids (or gases) - Chromatography: a way to separate different substances based on how \qquad each substance moves through a filter.
What are Elements?	- We have already studied elements: An element is made of \qquad kind of _________-_ - Found on the \qquad
What is a Compound?	- A compound is a pure substance that is created by \qquad or more elements joining together. Ex: NaCl , \qquad CO_{2}, \qquad , NaHCO_{3}, and $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ - Notice that elements combine in many \qquad to make compounds - Ex: $\mathrm{H}_{2} \mathrm{O}$ and \qquad CO and \qquad - Compounds have different \qquad from the elements that they are made of. - Just like letters combine to form \qquad elements combine to form - Most substances are \qquad not pure \qquad - Atoms are held together by \qquad - Chemical bond: the " \qquad " that holds atoms together; involves
Atoms combine in predictable numbers	- Chemical \qquad element \qquad in a ratio to represent a \qquad - $\mathrm{CO}_{2} \rightarrow 1$ carbon atom ratio $=1: 2$ 2 oxygen atoms - $\mathrm{H}_{2} \mathrm{O} \rightarrow$ ___ hydrogen atoms ratio $=$ \qquad 1 oxygen atom - Ex. $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O} \rightarrow$ \qquad carbon atoms \qquad hydrogen atoms \qquad oxygen atoms - NOTE: we never use the \qquad (the number to the \qquad and slightly \qquad the element symbol) \qquad We simply write the element's symbol to show that there is \qquad of that element in the compound.
Practice Writing Compounds	1. 2 Hydrogen and 1 Oxygen \qquad 2. 4 Carbon 16 Oxygen \qquad 3. 6 Carbon 12 Hydrogen 6 Oxygen \qquad
Why do Compounds Form?	- Compounds form to allow elements to become more \qquad - \qquad is flammable when it comes in contact with $\mathrm{H}_{2} \mathrm{O}$, and Cl_{2} is a \qquad - \qquad is a very stable compound that is neither flammable nor toxic - Compounds that are too \qquad will break down to form the more stable elements

How do Compounds Form?	- Compounds form by the interaction between the nuclei and \qquad of 2 or more elements - THE OCTET RULE: an element is most \qquad (happy :D) with \qquad valence electrons - Elements will join \qquad to get \qquad valence electrons - Ex: CO_{2} : oxygen has \qquad valence electrons and carbon has \qquad If the carbon shares \qquad with \qquad oxygen, everyone will have 8 valence electrons!
Common Compounds you NEED TO KNOW:	- Compounds are used in your \qquad - $\mathrm{H}_{2} \mathrm{O}$ is \qquad - is Carbon Dioxide - $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ is \qquad , and $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ is \qquad (both are \qquad !) - is table salt - NaClO is \qquad - HCl is hydrochloric acid - ______ is ammonia - NaHCO_{3} is baking soda - $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ is vinegar - O_{2} is \qquad
What Is A Mixture?	- A mixture is the \qquad combination of \qquad or more substances - It is important to understand that a mixture is \qquad combined - Mixtures can be separated by \qquad means such as filtration, distillation, and chromatography - Mixtures can be divided into \qquad groups: - \qquad mixtures - Heterogeneous mixtures
How do Mixtures Form?	- Mixtures form by \qquad putting \qquad or more substances together \qquad , cake batter, etc.). Remember:
What Is a Homogeneous Mixture?	- A homogeneous mixture is a mixture that's parts are \qquad distributed - Homogeneous mixtures are commonly called \qquad - Solution $=$ \qquad $+$ \qquad - Solute: substance ("stuff") \qquad - Solvent: substance ("stuff") \qquad - The solvent is present in \qquad quantity - The solute is present in the \qquad quantity - Ex: Salt water: \qquad =solute, \qquad =solvent \qquad is dissolved in solvent (example: saltwater = salt dissolved in water)
What Is a Heterogeneous Mixture?	- A heterogeneous mixture is a mixture that is \qquad distributed. - Examples: - Iced tea: The \qquad is floating at the top and therefore is not evenly distributed - Chex Mix: You may find a \qquad number of pretzels or Chex cereal in each handful; therefore, the mixture is \qquad distributed

Properties change in solutions	- A solute changes the \qquad properties of a solvent - \qquad point - Solvent (water) $=32^{\circ} \mathrm{F}$ or ____ ${ }^{\circ} \mathrm{C}$ - Solution (sugar water) $=15^{\circ} \mathrm{F}$ or \qquad ${ }^{\circ} \mathrm{C}$ - *the freezing point of a solution is \qquad than the freezing point of the pure solvent* - Example: why do we put salt on a road before it snows? - Boiling point - Solvent (water) $=212^{\circ} \mathrm{F}$ or \qquad ${ }^{\circ} \mathrm{C}$ - Solution (sugar water) $=225^{\circ} \mathrm{F}$ or \qquad ${ }^{\circ} \mathrm{C}$ - *The boiling point of a solution is \qquad than the boiling point of the pure solvent*
The amount of solute that dissolves can vary.	- Concentration: the amount of solute \qquad in the solution at a certain - \uparrow (to \qquad) concentration = add more \qquad $-\quad \downarrow$ (to \qquad) concentration = add more \qquad - Dilute: \qquad solute is \qquad in solvent - Concentrated: \qquad solute is \qquad in solvent - Saturated solution: has as much \qquad as it can \qquad at a certain any more solute
What is Solubility?	- Solubility: the amount of \qquad that will \qquad in a certain amount of a certain \qquad at a certain \qquad - every substance as a \qquad - High solubility: a \qquad amount of solute can dissolve in solvent - Low solubility: a \qquad amount of solute can dissolve in solvent - Insoluble: solute \qquad in solvent at all. (Ex: \qquad in water) - the solubility of a solute can be \qquad - \uparrow \qquad \qquad solubility of solids, \qquad solubility of gases - \uparrow \qquad \qquad solubility of gases
Summary: Classifying Matter	

